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Abstract

We present a detailed study of the effect of time delay on the collective dynamics of coupled limit cycle oscillators at
Hopf bifurcation. For a simple model consisting of just two oscillators with a time delayed coupling, the bifurcation diagram
obtained by numerical and analytical solutions shows significant changes in the stability boundaries of the amplitude death,
phase locked and incoherent regions. A novel result is the occurrence of amplitude death even in the absence of a frequency
mismatch between the two oscillators. Similar results are obtained for an array ofN oscillators with a delayed mean field
coupling and the regions of such amplitude death in the parameter space of the coupling strength and time delay are quantified.
Some general analytic results for theN → ∞ (thermodynamic) limit are also obtained and the implications of the time delay
effects for physical applications are discussed. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The collective behavior of a large assembly of coupled nonlinear oscillators provides valuable clues for un-
derstanding the complex dynamics of systems with many degrees of freedom. This has been one of the major
motivations for the recent large scale interest, both experimentally [1] and numerically [2,3], in the study of such
simple mathematical models and their application to a wide variety of physical and biological problems. Examples
of such applications include interactions of arrays of Josephson junctions [3–5], semiconductor lasers [6,7], charge
density waves [8], phase locking of relativistic magnetrons [9], Belousov–Zhabotinskii reactions in coupled Brusse-
lator models [10–13] and neural oscillator models for circadian pacemakers [14]. One of the prominent cooperative
phenomena, that was first highlighted by Winfree [15,16] in a simple model of weakly coupled limit cycle oscillators,
is that of frequency entrainment or synchronization of the diverse frequencies of the oscillator assembly to a single
common frequency [17–21]. This happens in a spontaneous and abrupt fashion once the coupling strength exceeds
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a critical threshold. Real life examples of such behavior are abound in nature, e.g. the synchronous flashing of a
swarm of fire flies, the chirping of crickets in unison or the electrical synchrony in cardiac cells. When the coupling
between the oscillators is comparable to the attraction to their individual limit cycles, other interesting phenomena
can occur [22–25] which involve the amplitudes of the individual oscillators. For example, if the coupling is suffi-
ciently strong and the spread in the natural frequencies of the oscillators sufficiently broad, the oscillators can suffer
an amplitude quenching or death [26–28]. Such behavior has been observed in experiments of coupled chemical
oscillator systems, e.g. coupled Belousov–Zhabotinskii reactions carried out in coupled tank reactors [29]. Other
collective phenomena that these coupled oscillator models display include partial synchronization, phase trapping,
large amplitude Hopf oscillations and even chaotic behavior [30,31] – all of which have been discussed widely in
the literature.

The goal of our present study is to examine the effect of time delay on the collective dynamics of coupled
oscillator systems. Time delay is ubiquitous in most physical and biological systems like optical bistable devices
[32], electromechanical systems [33], predator–prey models [34], and physiological systems [35,36]. They can
arise from finite propagation speeds of signals, for example, or from finite processing times in synapses, finite
reaction times in chemical processes and so on. Surprisingly, most past studies on coupled oscillator systems have
not considered the effect of time delay. The work of Schuster and Wagner [37], Niebur et al. [38], Nakamura et al.
[39] and Kim et al [40], are the only ones, that we are aware of, where they have tried to incorporate time delay
effects in the context of the coupled oscillator problem. However, they have restricted themselves to the simplest
of models, that of coupled limit cycle oscillators in the weak coupling limit where only the phase information is
retained and phenomena like amplitude death cannot occur. Our aim is to extend this study into the strong coupling
regime where both phase and amplitude responses need to be retained and to investigate the effect of time delay on
the various collective responses of such a model system. To keep the analysis simple, we begin with just two limit
cycle oscillators that are coupled with a time delay. For such a model, the bifurcation diagram is easy to obtain both
analytically as well as numerically. Furthermore, it allows us a detailed comparison with the past work of Aronson
et al. [26] who have analyzed an analogous model but without any time delay in the coupling. After identifying
and briefly discussing the results of time delay effects in this simpleN = 2 model, we next proceed to analyze a
large assembly of coupled limit cycle oscillators. For this study, we construct a model which is a generalization of
the mean field model of Matthews et al. [30,31] and where the coupling term is suitably modified to introduce time
delay. This model is explored in detail by extensive numerical solutions and linear stability analysis around fixed
points. The limit ofN → ∞ is particularly interesting and permits some explicit analytic results. Our principal
focus is on cooperative phenomena like amplitude death and frequency locking and we find that both these states
are significantly influenced by time delay effects. One of the surprising and dramatic results is that in the presence
of time delay, amplitude death can occur even for zero frequency mismatch between the oscillators (i.e. for identical
oscillators). This is in sharp contrast to the situation with no time delay where all previous numerical and analytical
works have emphasized the need to have a broad frequency spread for amplitude death to occur. A brief report of
this result has been published by us elsewhere [41]. In this paper, we give a more detailed and complete description
of this phenomenon. We also report on other newer findings related to time delay induced effects in the collective
regimes corresponding tophase lockedand chaotic states.

The organization of the paper is as follows. In the next section (Section 2), we analyze the model of two limit
cycle oscillators that have a time delayed coupling and compare and contrast our results with the previous work
of Aronson et al. In Section 3, we describe the more generalN coupled oscillator model and present numerical
as well as analytic results for the different collective states. This includes the amplitude death region, the phase
locked region and the so-called chaotic regime. Some explicit results for theN → ∞ (thermodynamic) limit are
also presented. Section 4 provides a summary of our results and a brief discussion on possible future extensions of
this work.
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2. Two delay coupled oscillators

2.1. Model equations

For the fundamental oscillator unit of our model, we choose the simple limit cycle oscillator described by the
equation

Żj (t) = (1 + iωj − |Zj (t)|2)Zj (t), (1)

whereZj is the complex amplitude of thej th oscillator. Each oscillator has a stable limit cycle of unit amplitude
|Zj | = 1 with angular frequencyωj . We consider a simple model in which two of them are coupled linearly to each
other as follows,

Ż1(t) = (1 + iω1 − |Z1(t)|2)Z1(t)+K[Z2(t − τ)− Z1(t)], (2)

Ż2(t) = (1 + iω2 − |Z2(t)|2)Z2(t)+K[Z1(t − τ)− Z2(t)], (3)

whereK ≥ 0 is the coupling strength andτ ≥ 0 is a measure of the time delay. These model equations are a
direct generalization of the set of equations studied by Aronson et al. [26] which do not have any time delay. The
coupled equations represent the interaction between weakly nonlinear oscillators (that are near a supercritical Hopf
bifurcation) and whose coupling strength is comparable to the attraction of the limit cycles. It is important then to
retain both the phase and amplitude response of the oscillators. WritingZj = rjeiθj , Eqs. (2) and (3) can also be
expressed in polar form as

ṙ1 = r1(1 −K − r2
1)+Kr2(t − τ) cos [θ2(t − τ)− θ1], (4)

ṙ2 = r2(1 −K − r2
2)+Kr1(t − τ) cos [θ1(t − τ)− θ2], (5)

θ̇1 = ω1 +K
r2(t − τ)

r1
sin [θ2(t − τ)− θ1], (6)

θ̇2 = ω2 +K
r1(t − τ)

r2
sin [θ1(t − τ)− θ2]. (7)

For τ = 0, the work of Aronson et al. [26] shows that the nonlinear Eqs. (4)–(7) have a variety of stationary and
nonstationary solutions which depend on the strength of the coupling parameterK and the frequency mismatch
between the oscillators1 = |ω1 −ω2|. For extremely weak coupling(K → 0) and large1, the oscillators behave
independently and the long term behavior is a nonstationary incoherent state in which the relative phase of the two
oscillators moves through all phases. Such a state is also called aphase driftstate. With increasing coupling strength,
two important classes of stationary solutions are possible. One of them isamplitude deathin which the oscillators
pull each other off their cycles and collapse into the origin(r1 = r2 = 0) ast → ∞. The other collective state is
calledfrequency lockingor mutual entrainmentin which the two oscillators synchronize to a common frequency
and the time asymptotic state is one of coherent or collective oscillation. The distribution of these solutions can be
neatly represented in a phase diagram (bifurcation diagram) in the1−K space. Fig. 1, reproduced from the work
of Aronson et al. [26] summarizes the above discussion. Region I represents the amplitude death region, region II
marks the phase locked state and region III is the phase drift regime. We now analyze Eqs. (4)–(7) for finite values
of τ and examine the effect ofτ on the conditions for the onset of these states and changes if any in the basic
properties of these states. In the following subsections, we discuss the results for the amplitude death and phase
locked solutions.
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Fig. 1. Bifurcation diagram of Aronson et al. of two coupled oscillators without time delay in the plane of coupling strength(K) and the frequency
mismatch(1). Region I, bounded by the curvesK = 1 andK = (1 +12/4)/2, represents the oscillator death region. Region II, bounded by
K = 1/2 (when1 < 2) andK = (1 +12/4)/2 (when1 > 2), represents the frequency locked state. Region III represents the incoherent or
drift solutions. All the three regions meet at a degenerate point(K,1) = (1,2).

2.2. Amplitude death

As is clear from Eqs. (2) and (3), the originZj = 0, j = 1 and 2, is always a fixed point of the system. The
question to consider is whether this is a stable fixed point in which case all amplitudes of the oscillators would
collapse into the origin ast → ∞. In the absence of time delay, this state occurs in the regionK > 1 for1 > 2.
To determine the onset conditions of this state in the presence of time delay(τ 6= 0), we linearize Eqs. (2) and (3)
aroundZj = 0 to obtain the characteristic equation,

det(A− λI) = 0, (8)

whereA, the linearized matrix of Eqs. (2) and (3), is given by

A =
[
a + iω1 Ke−λτ

Ke−λτ a + iω2

]
, (9)

I is the identity matrix,a = 1 − K and the perturbations are assumed to have a time dependence proportional to
eλt . Eq. (8) can be written in the form

(a − λ+ iω1)(a − λ+ iω2)−K2 e−2λτ = 0 (10)

or

λ2 − 2(a + iω̄)λ+ (b1 + ib2)+ ce−2λτ = 0, (11)

whereb1 = a2 − ω̄2 +12/4, b2 = 2aω̄,1 = |ω1 −ω2|, ω̄ = (ω1 +ω2)/2 andc = −K2. This is a transcendental
equation having an infinite number of roots and we wish to study the movement of the eigenvalues in the parametric
plane of(K,1) and(K, τ). Settingλ = α+ iβ, whereα andβ are real, the amplitude death region corresponds to
the region in whichα < 0. The marginal stability curves or the critical curves are thus obtained by requiring that
α = 0, i.e.λ = iβ. Substituting in Eq. (10), the equations defining the critical curves are thus given by

(β − ω̄)2 − 12

4
− a2 +K2 cos(2βτ) = 0, (12)

2a(β − ω̄)−K2 sin(2βτ) = 0. (13)

We first briefly describe the case ofτ = 0, in order to appreciate the changes brought about by finite time delay.
Settingτ = 0 in Eq. (13), we obtain the conditionsK = 1 andβ = ω̄. Substituting forβ in Eq. (12), we obtain
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K = γ (1) = (1/2)(1 + 12/4). So the critical curves in this case areK = 1 andK = γ (1) in agreement with
the work of Aronson et al. [26] and as illustrated in Fig. 1. It is appropriate to distinguish between two regions in
the(K,1) space, namely (i)1 > 2 and (ii)1 < 2. When1 > 2, the stable region of the origin (amplitude death
region) is bounded byK = 1 andK = γ (1). The eigenvalues in this particular case can be written down (from Eq.
(11)) asλ = 1−K ±

√
K2 −12/4± iω̄. On the boundaryK = 1, the origin loses stability in a Hopf bifurcation.

Two pairs of eigenvalues cross into the right half plane. On the boundaryK = γ (1), a pair of eigenvalues crosses
into the right hand side (RHS) of the complex eigenvalue plane, giving rise to a single frequency, which corresponds
to the phase locked state of the system. In the second case, when1 < 2, there is no amplitude death. However,
the critical curves give a boundary on which an unstable fixed point is born as one moves to the left ofK = γ (1)

curve. Note also that the boundaries of the three regions meet in a highly degenerate manner in the single point
K = 1,1 = 2. Another distinguishing feature of theτ = 0 case is that the critical curves are independent of the
mean frequencȳω. In fact, one can set̄ω = 0 (which is equivalent to transforming to a frame rotating at the mean
frequency) and carry out the same analysis without any loss of generality. This property follows from the original
symmetry of the coupled equations.

Whenτ 6= 0, this symmetry is lost and the critical curves are no longer independent ofω̄ as seen from Eqs.
(12) and (13). In comparing the phase diagrams of theτ 6= 0 case with that of the Aronson et al. [26] diagram,
we therefore need to always mention the specific value of the mean frequency parameter. We now briefly describe
our numerical procedure for solving Eqs. (12) and (13) in order to plot graphically the critical curves in the(K,1)

space. To eliminateβ between the two equations, it is more convenient to write the equations in the following
parametric form,

F = (β − ω̄)

sin(2βτ)
, (14)

K ≡ K± = −F ±
√
F 2 + 2F, (15)

12 = −4a2 + 4(β − ω̄)2 + 4K2 cos(2βτ), (16)

where Eq. (15) corresponds to the two roots ofK for the quadratic equation (13). Eqs. (14)–(16) represent two sets
of curves arising due to the± signs. Let us denote the set of curves arising due to the ‘+’ sign byS+ ≡ S+(K+,1)
and the curves due to the ‘−’ sign by S− ≡ S−(K−,1). The curvesS+ andS− are obtained by choosing an
interval ofβ and correspondingly evaluatingK and1 and thus eliminatingβ. The functionF has singularities
at β = βn = nπ/2τ , wheren is an integer. Each intervalI = (βn, βn+1) provides a part of the phase curves in
(K,1) plane. In the(K,1) space, the curvesS− exist betweenK = 1 andK = 2 and the curvesS+ exist outside
this region in the intervals 1/2 < K < 1 andK > 2. And at higher values ofτ, S− produces curves which could
intersect. For small values of the parameterτ close to 0, the amplitude death region is bounded by the curveS−
whenK < 1 andS+ whenK > 1. At higher value ofτ , the boundary of the death region falls belowK = 1 in
which region the boundary is specified by the curvesS+. The transcendental Eqs. (14)–(16) must be studied for each
parametric value ofτ , since the curves in(K,1) space become more complicated as the parameterτ is increased.

We now present our results of the amplitude death region forω̄ = 10 for various values ofτ as obtained by the
numerical prescription described above. From the series of diagrams in Fig. 2, we notice that with the introduction
of finite τ , the point(K = 1,1 = 2) no longer has a degenerate character and the critical curves begin separating
and distorting in a continuous manner. The amplitude death region grows in size as the value ofτ is increased from
0 and the curveS+ defined by the interval ofβ ∈ (0, ω̄) starts bending down below the1 = 2

√
2K − 1 curve

towards the1 = 0 axis. For a critical value ofτ = τc, it touches the1 = 0 axis and the region of death on the
axis lies between the two points of intersectionK1 andK2 of S+ with 1 = 0. This death region has a finite width
K2 −K1 for a range of values of the delay parameterτ . This phenomenon of death of identical oscillators is a novel
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Fig. 2. The effect of time delay on the boundary of the amplitude death region of two coupled oscillators. The critical curves are plotted from Eqs.
(14)–(16) forω̄ = 10. Region I represents the amplitude death region. For small values ofτ , the degenerate point(K,1) = (1,2) disappears
and the death region is bounded by the curvesS− (solid lines) andS+ (dashed lines) as defined in the text. As the delay parameterτ is increased,
the bounding curves get deformed continuously.

result purely induced by the temporal delay in the coupling of the oscillators. This behavior presents for a range of
τ after which the bifurcation curve lifts up from the1 = 0 line and starts moving upward.

To quantitatively study this region of amplitude death for identical oscillators, we take a more detailed look at
the trajectory of the two bounding pointsK1 andK2 in the parametric space of(K, τ) for1 = 0. Let this trajectory
be calledτb(K) for which we require that all the eigenvalues of the original transcendental equation lie in the left
half plane of the complex eigenvalue plane whenτ > τc. To identify such a curve from all the permissible multiple
critical curves in the parametric space(K, τ), it is simpler to start with the original Eq. (10) and setω1 = ω2 = ω0

in it. The eigenvalue equation now simplifies to

λ = 1 −K + iω0 ±Ke−λτ . (17)

Let λ = α + iβ, whereα andβ are real. We assume without loss of generality thatβ ≥ 0. In order to obtain the
critical curves, we setα = 0 and consider both the equations arising out of ‘+’ and ‘−’ signs in Eq. (17). After
some straightforward algebra, involving the choice of the correct signs in the inversion of the cosine function, we
obtain the following two sets of critical curves,

τ1 ≡ τ1(n,K) = nπ + cos−1(1 − 1/K)

ω − √
2K − 1

, (18)

τ2 ≡ τ2(n,K) = (n+ 1)π − cos−1(1 − 1/K)

ω + √
2K − 1

, (19)

wheren = 0,1, . . . ,∞. We further need to know the nature of the transition of pairs of eigenvalues as it crosses
these curves. For this, it is necessary to evaluate dα/dτ on each of these curves and examine its sign. Setting
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Fig. 3. The death island. The amplitude death region for identical oscillators with a common frequency ofω̄ ≡ ω0 = 10 in (K, τ) space. The
island boundaries are defined byτ1(0,K) andτ2(0,K). No other regions of amplitude death region exist for this value ofω0.

λ = α + iβ in Eq. (17) and differentiating with respect toτ , it is straightforward to get

dα

dτ

∣∣∣∣
α=0

= c1β(β − ω0) =
{
c1

√
2K − 1(ω0 + √

2K − 1), if β = β+,
−c1

√
2K − 1(ω0 − √

2K − 1), if β = β−,
(20)

wherec1 = [(1 ± Kτ)2 + (Kτ sin(βτ))2]−1, which is a real positive constant andβ ≡ β± = ω0 ± √
2K − 1.

From the above equation it is easily seen that

dα

dτ

∣∣∣∣
α=0



< 0 on τ1 if K < f (ω0),

> 0 on τ1 if K > f (ω0),

> 0 on τ2,
(21)

wheref (ω0) = (1 + ω2
0)/2. Thus on aτ1 curve, a pair of eigenvalues transits to the left half plane, provided the

coupling strength is smaller thanf (ω0) and to the right side if the coupling strength is greater thanf (ω0). On
a τ2 branch of the critical curves, however, a pair of eigenvalues always crosses into the right half plane of the
complex plane. Thus, for a finite region of amplitude death to exist in theK − τ plane, it needs to be bounded by
appropriate branches of theτ1 andτ2 curves and conditionK < f (ω0) should hold. ForK > f (ω0), there would
be no amplitude death region at all.

In Fig. 3, we illustrate the above arguments more graphically by plotting the critical curvesτ1(n,K) (solid lines)
andτ2(n,K) (dashed lines) for the first few value ofn and forω̄ = 10 in theK − τ space. It is possible to identify
τ1(0,K) asτb(K). This curve forms the first boundary of the amplitude death region of identical oscillators in
(K, τ) space. The stability of the origin can be lost when a pair of eigenvalues makes a transition to the right half
plane, which in the present case will occur onτ2(0,K) (as can be verified from Eq. (21)). So the region enclosed
by the intersection ofτ1(0,K) andτ2(0,K) forms a region of amplitude death in theK − τ space, which we label
as adeath island. Physically, such an island represents a region in phase space where for a given value ofω and at a
fixedK, we move (by varyingτ ) from an unstable region (corresponding to phase locked states) into a stable region
as we cross the left boundary of the island to emerge again into an unstable region as we cross the right boundary of
the island. Is it possible to have more than one island for a given value ofω0? To answer this question, we see from
Fig. 3, that the next curve along theτ axis isτ2(1,K) on which another pair of eigenvalues will make a transition
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Fig. 4. The existence of multiple death islands. In the(τ,K) space the amplitude death region is multiply connected (i.e. higher order death
islands exist) for higher values ofω0. The figure shows that forω0 = 30, there are three death islands which are defined by the set of curves
τ1,2(m,K) wherem = 0,1,2.

Fig. 5. Dependence of the size of the death island on the common intrinsic frequency,ω0. Below a certain threshold, which is given by the
condition of intersection of the curvesτ1(0,K) andτ2(0,K), the amplitude death region disappears. This value, found numerically, is 4.812.

to the right half plane. Thus, when one gets toτ1(1,K), which is the next in the sequence and on which a pair of
eigenvalues crosses to the left half plane, there is still a pair left in the right half plane. Thus, the region between
τ1(1,K) andτ2(2,K) does not constitute a death island. In general, the frequency ofτ2 curves is higher thanτ1,
i.e.,

δτ2(n,K) < δτ1(n,K), (22)

whereδτ1(n,K) = τ1(n + 1,K) − τ1(n,K) andδτ2(n,K) = τ2(n + 1,K) − τ2(n,K). Thus, the death island
region is usually singly connected and there are no higher order islands. However, the ordering of the curves depends
on the magnitude ofω0. In the present case, we do not see any multiple islands in the range 4.812≤ ω ≤ 14.438.
Forω0 > 14.438, we do see the appearance of higher order islands as shown in Fig. 4 forω0 = 30. The size of the
primary death island is found to be a function ofω0 and as we shall see in the next section, it also depends onN ,
the number of coupled oscillators. Fig. 5 displays the island sizes for different values ofω0. The size of the island
decreases with decreasing frequency and vanishes below a certain threshold.
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All the above features of the amplitude death phenomenon have also been confirmed by a direct numerical solution
of the coupled oscillator equations and excellent agreement with the analytic results have been found.

2.3. Frequency locking

The frequency (or phase) locked solutions of the system of Eqs. (4)–(7) are characterized by the property that
the relative phase of the two oscillators is a constant. The phase locked state can be described by the ansatz
θ1,2(t) = �t∓α/2, whereα, the phase difference between the two oscillators, and�, the common frequency of the
two oscillators are real constants. Substitution of this ansatz in Eqs. (6) and (7) further shows that the amplitudes of
the limit cycles remain constant in this case. Thus, the phase locked solutions can be described by the representation,
(r1(t), r2(t), θ1(t), θ2(t)) = (R1, R2, �t − α/2, �t + α/2), whereR1,2 are constants. Substituting such a form
in Eqs. (4)–(7), we obtain the following set of four equations from which the values ofR1, R2, � andα can be
evaluated,

(1 −K − R2
1)R1 +KR2 cos(α −�τ) = 0, (23)

(1 −K − R2
2)R2 +KR1 cos(α +�τ) = 0, (24)

� = ω1 +K
R2

R1
sin(α −�τ), (25)

� = ω2 −K
R1

R2
sin(α +�τ). (26)

These equations can also be rearranged in the following form which is slightly more convenient for numerical
solutions,

R2
1 = 1 −K +Kf1 cos(α −�τ), (27)

R2
2 = 1 −K +Kf2 cos(α +�τ), (28)

α = sin−1

√
sin2(�τ)− (�− ω1)(�− ω2)

K2
, (29)

R2
2 = f 2

1 R
2
1, (30)

wheref1 = (� − ω1)/(K sin(α − �τ)) andf2 = −(� − ω2)/(K sin(α + �τ)). This is a set of transcendental
equations whose solutions describe the phase locked equilibria. We again first briefly discuss theτ = 0 case.
Puttingτ = 0 in Eqs. (27) and (28), we see that there are two possible equilibrium solutions which are given by
(i) R2

1 = R2
2 = ρ2 which is called the symmetric equilibrium, and (ii)R2

1 + R2
2 = 1 − K, the asymmetric case.

Both these equilibria have been studied in detail by Aronson et al. [26]. The symmetric phase locked equilibria
are given byρ2± = 1 − K ±

√
K2 −12/4, � = (ω1 + ω2)/2 andα±, whereα+ = sin−1(1/2K), andα− =

π − sin−1(1/2K). Of these two symmetric equilibria, the set given by(ρ2+, �, α+) is found to be stable, whereas
the solution(ρ2−, �, α−) is unstable. The asymmetric phase locked solutions turn out to be unstable. Thus, for
τ = 0, the only stable equilibrium is the one where the two oscillators are synchronized to the mean frequency and
have identical amplitudes. Note that the amplitudes are lowered from the unity value of the uncoupled case by the
amountK −

√
K2 −12/4.

With finite time delay(τ 6= 0) there is a richer fare of equilibria. This is evident from the full set of transcendental
Eqs. (27)–(30) which permit a large number of solutions. Although it is difficult to obtain analytic forms for these
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Fig. 6. The phase locked solutions. The common frequency�, the phase differenceα and the amplitudes of the individual oscillators plotted as
a function of the coupling strength,K for τ = 0.4084,1 = 1, andω̄ = 10. The oscillators have the phase differenceα, either around 0 (i.e.
in-phase synchronization) or aroundπ (anti-synchronization). The unstable portions of the solutions are plotted as dashed lines.

solutions, it is easy to track these solutions numerically. We have carried out such an analysis and our results for
τ = 0.4084 are displayed in Fig. 6. The number of these coherent states increases as a function ofK andτ . We
have also studied the stability of these states by carrying out a linear perturbation analysis of Eqs. (4)–(7) around
the phase locked solutions. The algebraic details of this analysis are given in Appendix A. Numerical solution of
the stability conditions shows that all these higher frequency states are stable (except for small bands of unstable
regions which are indicated by dashed curves in Fig. 6). Thus, these higher frequency states are genuine collective
states of the system that are physically accessible. It should be mentioned that similar collective states were also
observed in the delay coupledphase onlymodel studied by Schuster et al. [37]. One difference between those results
and our amplitude inclusive model is that the frequencies of our model are slightly lower due to amplitude effects.
When the phase locked amplitudes of the two oscillators are equal or if their ratio is close to unity, the effect of the
amplitude on the magnitude of the phase locked frequencies ceases.

We end this analysis of theN = 2 model with a short description of the typical phase diagram for finite time
delays. Such a diagram is shown in Fig. 7 forτ = 0.4084, which reveals a much richer structure in comparison to
the Fig. 1 of Aronson et al. [26]. Note that one no longer has the clean separation of the Bar-Eli region, the phase
locked region and the phase drift region into three disjoint regions that converge at a single degenerate point. Instead,
the phase locked region now always surrounds the Bar-Eli region and the single degenerate point is replaced by
a series ofX points resulting from the braided structure of the phase locked region in the vertical direction. The
dotted curve (obtained numerically) marks the separation of the phase locked and the incoherent regions. This curve
also represents the birth of two fixed points of the system, one stable and the other unstable. These branches can
be seen in Fig. 8 (a), where the phase locked amplitudes are plotted at1 = 2. The dashed curves are the unstable
branches and the solid curves, stable branches. At large values ofK, other bifurcation curves appear in the phase
locked region indicating the appearance of higher frequency states [37]. Figs. 8(b,c) show, respectively, the phase
locked solutions for1 = 7 asK is varied and forK = 1 as1 is increased. It should be noted that the basic nature
of the transitions, namely a supercritical Hopf bifurcation, is preserved in the presence of time delay. Fig. 8(b), a
typical example, illustrates this clearly.
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Fig. 7. The bifurcation diagram in the(K,1) space forτ = 0.4084 andω̄ = 10. The region marked I is the amplitude death region, II corresponds
to the phase locked solutions, and the region III is the phase drift or incoherent region. The dotted curve which separates the phase locked region
from the incoherent region is obtained by numerical integration of the original equations. Notice that the degenerate points (marked by stars)
have reappeared for this value of the delay parameterτ . At higher values ofK, other bifurcation curves appear, indicating higher order frequency
states as shown in Fig. 6.

Fig. 8. The amplitude curvesR1 andR2 of the phase locked solutions of the two oscillators plotted in three different regions.R1 corresponds to
the amplitude of the oscillator with the smaller of the intrinsic frequencies andR2 that of the larger of the two. (a) At1 = 2, the stable branches
(solid curves) continue to exist, whereas the unstable (dashed curves) of the two oscillators merge with the origin asK is increased. (b) The
amplitudes of the oscillators in one of the ‘closed loops’ in the bifurcation diagram (previous figure) at1 = 7. The origin is unstable (dashed
line) in the region where the periodic orbits are stable and stable outside this region, illustrating the supercritical Hopf bifurcation and (c) shows
the phase locked solutions as one moves along the lineK = 1. In the first gap, there are phase drift solutions and in the second gap, amplitude
death solutions.

3. Assembly of N delay coupled oscillators

3.1. Model equations

In this section, we study the interaction of a large number of limit cycle oscillators that are globally coupled with
a linear time delayed coupling. To describe such a system, we introduce the following set of model equations,

Żj (t) = (1 + iωj − |Zj (t)|2)Zj (t)+ K ′

N

N∑
k=1

[Zk(t − τ)− Zj (t)] − K ′

N
[Zk(t − τ)− Zj (t)], (31)

wherej = 1, . . . , N,K ′ = 2K is the coupling strength andτ is the delay time. The last term on the RHS has
been introduced to remove the self-coupling term. The model is a straightforward generalization of the mean field
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model studied extensively by Ermentrout [27], Mirollo and Strogatz [28], and others [22] and reduces exactly to
their model forτ = 0. Mirollo and Strogatz [28] have provided rigorous analytical and numerical conditions for
amplitude death in such a mean field model system. Their conclusions, in general, are similar to the case ofN = 2,
namely, that one needs a sufficiently large variance in frequencies for death to occur andK has to be sufficiently
large. In a short while, we will discuss our findings for the time delayed model in the light of their results.

As is customary in mean field models, we can also define a centroid or ‘order parameter’ of the form

Z̄ = Reiφ = 1

N

N∑
j=1

Zj (t), (32)

whereR andφ denote the amplitude and phase of the centroid. The order parameter is a useful quantity in the
largeN model, since its behavior provides qualitative and quantitative clues about the collective and nonstationary
states of the system, e.g.R = 0 (in the large time limit) is indicative of an incoherent state, whereasR = 1
marks a ‘phase locked’ state. As has been noted by Matthews and Strogatz [30,31], the time behavior ofR can
also characterize chaotic states and other nonstationary states like large amplitude Hopf oscillations. We will also
examine the behavior of this parameter in certain cases to track the effects of the time delay parameter on the
collective dynamics of the largeN system. In terms of the order parameter defined above, the model equations can
be written as follows,

Żj (t) = (1 −K ′d + iωj − |Zj (t)|2)Zj (t)+K ′Z̄(t − τ)− K ′

N
Zj(t − τ), (33)

whered = 1 − 1/N . To study the stability of the origin, we once again carry out a linear perturbation analysis of
Eq. (31) with the perturbation varying as eλt . The linearized matrix of Eq. (31) is given by

B =



l1 f · · · f

f l2 · · · f
...

...
. . .

...

f f · · · lN


 , (34)

whereln = 1 −K ′d + iωn, f = (K ′/N)e−λτ . That is

Bij =
{

1 −K ′d + iωj , if i = j,
K ′
N

e−λτ , if i 6= j.

It is more convenient to cast the eigenvalue problem in terms of another matrixC, where we defineC = B +
(K ′d − 1)I (with I being the identity matrix). Ifµ is the eigenvalue ofC, then it is related toλ by the relation
µ = λ+ (K ′d − 1). The matrixC is given by

Cmn =
{

iωm, if m = n,

f, if m 6= n.
(35)

The eigenvaluesµ are obtained by solving det(C − µI) = 0, i.e.,

det




iω1 − µ f · · · f

f iω2 − µ · · · f
...

...
. . .

...

f f · · · iωN − µ


 = 0. (36)
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This eigenvalue equation can be compactly expressed as a product of two factors,[
N∏
k=1

(iωk − µ− f )

] 
1 + f

N∑
j=1

1

iωj − µ− f


 = 0. (37)

As pointed out by Matthews and Strogatz [30,31], the first factor represents the continuous spectrum of the system,
whereas the second factor gives us the discrete spectrum. In general, it is not possible to solve the characteristic
equation (37) analytically and for largeN , the numerical tracking of all the eigenvalues is also an arduous task.
There are two interesting limits however, in which the analysis gets considerably simplified. If theN oscillators
have identical frequencies, then it is possible to obtain exact algebraic relations for the critical curves marking the
amplitude death region. This is of considerable interest to us in view of the novel result of theN = 2 model, which
showed amplitude death for1 = 0. The interesting question to ask is, whether such a phenomenon exists for the
arbitraryN case. We will study this question in the next subsection. Another interesting limit is theN → ∞ limit,
often called the thermodynamic limit. It is once again possible to obtain some exact analytic results in this limit
regarding the behavior of the critical curves in the bifurcation diagram. We will carry out this analysis in Section
3.3. As shown by Mirollo and Strogatz [28] (for theτ = 0 case), the infinite system results are of practical interest
since they provide a fairly accurate picture of amplitude death for the large but finite system. A similar conclusion
holds for the time delay case as well, as we find out by comparing the analytic results of the thermodynamic limit
with numerical solutions for a large number of oscillators. In the final subsection, we look at the time behavior of
the order parameter in the various collective regimes and discuss its dependence on the time delay factor. We also
briefly discuss the region of nonstationary solutions (chaos, Hopf oscillations etc.) that was first pointed out by
Matthews and Strogatz [30,31] for theτ = 0 case.

3.2. Amplitude death of identical oscillators for arbitraryN

In this section, we treat the case of identical oscillators suffering amplitude death for an arbitrary number of
globally coupled oscillators,N . For a set of identical oscillators, the frequency distribution of the system is a delta
function,

g(ω) = δ(ω − ω0), (38)

whereω0 is the natural frequency of each oscillator. With this assumption, the matrixB becomes a circulant matrix
whose eigenvalues can be expressed in terms of theN th roots of unity. Since in this particular case only two kinds
of coefficients appear in the matrixB, the eigenvalues become much simpler. Explicitly, they are given by

λ =
{

1 −K ′d + iω0 +K ′de−λτ ,1 −K ′d + iω0 − K ′

N
e−λτ

}
, (39)

in which the second eigenvalue has a degeneracy ofN−1. Considering both the eigenvalue equations and following
a similar procedure as described for theN = 2 case, we obtain the following set of critical curves,

τa(n,K) = 2nπ + cos−1
[
1 − 1/K ′d

]
ω0 − √

2K ′d − 1
, (40)

τb(n,K) = 2(n+ 1)π − cos−1
[
1 − 1/K ′d

]
ω0 + √

2K ′d − 1
, (41)

τc(n,K) = 2(n+ 1)π − cos−1
[
(1 −K ′d)/K ′(1 − d)

]
ω0 −

√
[K ′(1 − d)]2 − (K ′d − 1)2

, (42)
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Fig. 9. The existence of death islands for an arbitrary number of globally coupled oscillators. The figure shows the death island regions for
N = 2,3,4 and∞ plotted from Eqs. (40)–(43) withn = 0. All the oscillators are assumed to have an intrinsic frequency ofω0 = 10. The death
island survives even in the limit ofN → ∞.

τd(n,K) = 2nπ + cos−1
[
(1 −K ′d)/K ′(1 − d)

]
ω0 +

√
[K ′(1 − d)]2 − (K ′d − 1)2

. (43)

Note thatN enters as a parameter (throughd = 1−1/N ) in these sets of curves and the family of curves is now four
instead of the two found for theN = 2 case. In fact forN = 2, the curvesτa(n,K) andτc(n,K) combine to give
τ1(n,K) andτb(n,K) andτd(n,K) combine to giveτ2(n,K) of the previous section. In Fig. 9, we display some
typical death island regions for various values ofN as obtained from the critical curves (40)–(43) withn = 0. The
sizes of the islands are seen to vary as a function ofN and approach a saturated size asN → ∞. The existence of
these regions independently confirmed by direct numerical solution of the coupled oscillator equations, demonstrates
that the amplitude death phenomenon for identical oscillators happens even in the case of an arbitrarily large number
of oscillators. They also display multiple connectedness of the death region for higher values ofω0, as was seen for
theN = 2 case.

3.3. Oscillator death in the thermodynamic limit

In the thermodynamic limit(N → ∞, d → 0), the summation in the discrete spectrum of Eq. (37) can be
replaced by an integral and replacingµ by its definition, the discrete eigenvalue equation can be written as

h(λ) =
∫ ∞

−∞
g(ω)

λ+K ′ − 1 − iω
dω = 1

K ′ e
λτ , (44)

whereg(ω) denotes the distribution of the frequencies. The continuous spectrum is given by

λ = 1 −K ′ + iω where ω ∈ g(ω). (45)

From Eq. (45), one can see that one of the critical curves isK ′ = 1. And the amplitude death region should lie
to the right of this region in order for the eigenvalues to have negative real parts. To determine the critical curves
from the discrete spectrum atα = 0, we substituteα+ iβ for λ in Eq. (44), rationalize the denominator and equate
the real and imaginary parts to zero and we have

I1 =
∫ ∞

−∞
K ′ − 1

(K ′ − 1)2 + (β − ω)2
g(ω)dω = 1

K ′ cos(βτ), (46)

I2 =
∫ ∞

−∞
ω − β

(K ′ − 1)2 + (β − ω)2
g(ω)dω = 1

K ′ sin(βτ). (47)
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These two relations define the other critical curve and for a giveng(ω), they provide a complete analytic description.
As an example, let us choose a simple uniform distribution given by

g(ω) =
{

1/2σ, if ω ∈ [−σ, σ ],
0, otherwise.

(48)

The integralsI1 andI2 can now be explicitly carried out and we get

tan−1
(
σ + β

K ′ − 1

)
+ tan−1

(
σ − β

K ′ − 1

)
= tan−1

(
2σ(K ′ − 1)

(K ′ − 1)2 − σ 2 + β2

)
= 2σ

K ′ cos(βτ), (49)

and

log

(
(K ′ − 1)2 + (σ − β)2

(K ′ − 1)2 + (σ + β)2

)
= 4σ

K ′ sin(βτ). (50)

Thus, in the limit of an infinite number of oscillators, the above set of transcendental equations, parametrized by
the time delay, provide a complete description of the critical curve for amplitude death (along withK ′ = 1). It is
also easy to see that forτ = 0, β = 0 is the solution one obtains from Eq. (50) and upon substitution of this in Eq.
(49), one obtains

tan−1
(

σ

K ′ − 1

)
= σ

K ′ , (51)

which is the equation for the critical curves in the no delay case as was obtained by [27,28]. In Fig. 10, we plot the
region of amplitude death for a typical value ofτ . We also note that the general nature of the bifurcation curves is
similar to theN = 2 case including the occurrence of amplitude death for1 = 0.

As mentioned earlier, Mirollo and Strogatz [28] also point out that the infinite system provides a fairly accurate
description of the large finite system. In order to check this out for the time delayed system, we have carried out
numerical studies of a large system(N = 800) of oscillators for a few values ofK and1 at a fixed value ofτ . The

Fig. 10. The amplitude death region forN globally coupled oscillators, asN → ∞ for uniform intrinsic distribution of frequencies,g(ω), with
the average frequency,ω̄ = 10 plotted from Eqs. (49) and (50) by eliminatingβ for τ = 0.07. The death region is bounded byK ′ = 1 and
tan(σ/K ′) = σ/(K ′ − 1) for τ = 0. Both the curves meet at a degenerate point(K ′, σ ) = (1, π/2). As the delay parameterτ is increased, the
boundaryK ′ = 1 (i.e.K = 0.5) still continues to be one of the boundaries. But the second curve distorts in a continuous fashion and at a certain
value ofτ , it touches theσ = 0 axis, showing the death of identical oscillators. The points marked, indicate the numerically found value of the
boundary forN = 800.
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Fig. 11. The rate of approach to the origin of the amplitude of the order parameter,R. If we assume thatR ∝ eη(τ)t , the exponentη(τ) plotted in
the above graph shows that the rate of approach to the origin is maximum in the middle of the death island. As one approaches the boundaries
of the island on either side, the rate decreases to 0.

values of1 andK at which the transition from the phase locked region to the death occurs are marked with circles
in Fig. 10. As we see these points lie near the analytic curves for theN = ∞ case and thus the bifurcation diagram
for the finite large system can be expected to be similar to the infinite case.

3.4. Behavior of the order parameter

It is also interesting to examine the behavior of the order parameter in the limit of large number of oscilla-
tors, since it provides a good description of the macroscopic behavior of the system. Our particular interest now
is to detect any signatures of the time delay effect that might show up in the temporal behavior of the order
parameter.

We begin by studying its characteristic behavior in the amplitude death region where it is known to spiral in time
to the origin. To investigate the influence of the time delay, we can measure this exponential decay rate for various
values ofτ . Our numerical results are plotted in Fig. 11 where the decay exponent is plotted againstτ for two values
of K and for a particular value ofω for the case ofN = 800 oscillators. The range ofτ spans the width of a death
island. The exponent is seen to have a maximum negative value in the center of the island and it gets less negative as
one moves towards the boundaries. Thus, time delay has a dynamical influence on the rate at which the oscillators
collapse into the origin with the maximum rate of decay occurring in the center of the island.

The death islands are surrounded by the phase locked regions in which the order parameter assumes a nonzero
constant value. The magnitude of this value is found to be a function ofτ . Our numerical results show that the
saturated value of the order parameter grows in an algebraic fashion as a function ofτ , as we move from the death
island boundary into the phase locked region. This is demonstrated in Fig. 12 forK ′ = 5.

Finally, we examine the behavior of the order parameter in the narrow region straddling the boundary between
the phase locked and the phase drift region where Matthews and Strogatz [30,31] have found nonstationary behavior
corresponding to Hopf oscillations, large oscillations, quasi-periodicity and chaos. We find that the order parameter
displays all these characteristic behaviors even in the presence of the time delay. However, there is an overall
reduction of the phase space area of this region compared to the no delay case. To see this clearly, we choose to
consider the temporal record of the amplitude of the order parameter. The value of the order parameter is constant
in the phase locked region, and tends to zero as 1/

√
N with N , the number of the oscillators, in the incoherent

region. In the irregular region, a variety of behaviours can be seen. We take a long time record ofR discarding the
first few hundred points. The average value of this record,〈R〉, as shown in Fig. 13, forN = 500, shows a plateau
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Fig. 12. Power law behavior of the magnitude of the order parameter at the boundary of the death island. The order parameter is 0 in-
side the death island region due to the fact that the amplitudes of all the oscillators are zero. The order parameter shows a power law
behavior at the transition between the death island and the phase locked region. The curve is approximated numerically, atK ′ = 5, by
τ = 0.432+ 0.0992(R3 + 0.022R2 + 0.154R).

Fig. 13. The effect of the time delay,τ , on the irregular region which was found forτ = 0 by Matthews and Strogatz [30,31]. This region which
appears as a plateau forτ = 0, as a whole shrinks asτ is increased. The order parameter is unstable in this region. However, a long temporal
record ofR gives nearly constant average value. The average value distinguishes the three distinct regions quite accurately. To the right of this
plateau region is the phase locked region, and to the left is the incoherent region.

in the irregular region. This is almost unchanged when the number of oscillators is increased fromN = 500 to
N = 5000. This region shrinks considerably as the delay parameterτ is increased. We have also observed other
qualitative changes in the nature of the time variation of the order parameter which suggest subtle influences of time
delay on the dynamical pattern of the nonstationary states. A more detailed and quantitative study of these effects
are in progress and will be reported elsewhere.

4. Summary and discussion

We have studied the effect of time delay on the collective dynamics of a system of coupled limit cycle oscillators
that are close to a supercritical Hopf bifurcation. The oscillators are linearly coupled in a global fashion and time



32 D.V. Ramana Reddy et al. / Physica D 129 (1999) 15–34

delay is introduced in the coupling term. The principal effects of time delay on the stationary collective states
like amplitude death and phase locking are clearly evidenced even in a simple two coupled oscillator system. The
phase diagram shown in Fig. 7 summarizes these results. The boundary curve for the amplitude death region is a
sensitive function of the time delay parameter and the phase space distribution of locked states, amplitude death
and incoherent states is quite complex. The phase locked region shows the existence of multiple locked states all
of which are stable. A surprising result is the occurrence of amplitude death even for two identical oscillators over
a range of time delay values (Fig. 5). Such death islands in the parametric space of the coupling strength and the
time delay factor are found to persist even for a large number of identical oscillators. Our numerical findings are
backed by analytic results of linear stability of the amplitude death and phase locked states for theN = 2 and
theN → ∞ cases. The largeN results are found to agree very closely with theN → ∞ curves. For the case of
identical oscillators, we provide exact analytic curves for the island boundaries. Our principal focus has been on
the investigation of the stationary states but we have also confirmed the existence of the nonstationary states (e.g.
Hopf oscillations, chaos etc.) in the finite time delay model. We hope to carry out a more detailed investigation of
these states in the future.

As we have mentioned earlier, time delay effects in the context of the coupled oscillator model have not been looked
at before. In view of the vast number of applications of the coupled oscillator model, our results may have significance
for some biological or physical systems. There are many physical examples of amplitude death in real systems.
One of the earliest that was investigated both theoretically and experimentally is that of coupled chemical oscillator
systems e.g. coupled Belousov–Zhabotinskii reactions carried out in coupled stirred tank reactors [12,29]. They can
also occur in ecological contexts where one can imagine two sites each having the same predator–prey mechanism
which causes the number density of the species to oscillate. If the species are capable of moving from site to site at a
proper rate (appropriate coupling strength), the two sites may become stable (stop oscillating) and acquire constant
populations. Another important application of this concept is in pathologies of biological oscillator networks e.g. an
assembly of cardiac pacemaker cells [15,16]. Amplitude death signifies cessation of rhythmicity in such a system
which is normally, spontaneously rhythmic for other choices of parameters. For the onset of such an arrhythmia,
current models based on Coupled oscillator networks need to assume a significant spread in the natural frequencies
of the constituent cells (oscillators) [28]. Our result of amplitude death demonstrates that this assumption may not be
necessary if one takes into account, time delay effects arising naturally from the finite propagation times of the signals
exchanged between the cells. Another possible application is in the area of high power microwave sources where it is
proposed to enhance the microwave power production by phase locking a large number of sources such as relativistic
magnetrons [9]. Time delay effects, arising from the finite propagation time of information signals traveling through
the connecting waveguide bridges, could impose important limitations on the connector lengths and geometries in
these schemes. Our findings could provide a guideline in this direction. Coupled oscillators featuring in several neural
network configuration where multiple phase locked states arising from time delay effects, could play an important
role.

Finally, we would like to discuss some further extensions of the present work and possible future directions of
research in this area. Our present results have been largely derived from the simple model of limit cycle oscillators,
which are close to a supercritical Hopf bifurcation and which are linearly coupled in a global fashion. It would
be interesting to carry out a similar analysis for limit cycle oscillators with local coupling. For the particular case
of death of identical oscillators, we have confirmed that the result holds for the locally coupled model as well,
but a more general investigation of other collective states remains to be done. Likewise, the introduction of more
complicated dynamics in the individual oscillators, such as shear (amplitude dependent frequency) [24] and higher
order nonlinearities can open up rich possibilities for the interplay of time delay and the collective dynamics of the
system.
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Appendix A. Stability of the frequency locked solutions

The phase locked solutions for the case ofN = 2 are given by(ψ1, ψ2, ψ3, ψ4) = (R1, R2, �t−α/2, �t+α/2).
To determine the stability of the phase locked states, we carry out a linear perturbation analysis about these solutions.
Supposeλ represents the eigenvalue, the characteristic equation is then given by

det

∣∣∣∣∣∣∣∣∣∣∣

A− λ C1e−λτ R2D1 −R2D1e−λτ

C2e−λτ B − λ −R1D2e−λτ R1D2

−R2
R2

1
D1

D1
R1

e−λτ −R2
R1
C2 − λ R2

R1
C1e−λτ

D2
R2

e−λτ −R1
R2

2
D2

R1
R2
C2e−λτ −R1

R2
C1 − λ

∣∣∣∣∣∣∣∣∣∣∣
= 0, (A.1)

whereA = 1−K − 3R2
1, B = 1−K − 3R2

2, C1 = K cos(−�τ +α), C2 = K cos(�τ +α),D1 = K sin(−�τ +
α),D2 = K cos(−�τ − α). We can also write the above determinant in the form of the following equation,

f00 + f01λ+ f02λ
2 + f04λ

4 + (f20 + f21λ+ f22λ
2)e−2λτ + f4e−4λτ = 0, (A.2)

where the coefficient functionsfij are given by

f00 = ABC1C2 +D2
1D

2
2 − AC2D

2
2R1

R2
− BC1D

2
1R2

R1
, (A.3)

f01 = −AC1C2 − BC1C2 − AD2
2R

2
1

R2
2

− BD2
1R

2
2

R2
1

+ABC1R1

R2
+ ABC2R2

R1
+ C2D

2
2R1

R2
+ C1D

2
1R2

R1
, (A.4)

f02 = AB + C1C2 + D2
1R

2
2

R2
1

+ D2
2R

2
1

R2
2

− AC1R1

R2
− BC1R1

R2
− AC2R2

R1
− BC2R2

R1
, (A.5)

f04 = −A− B + C1R1

R2
+ C2R2

R1
, (A.6)

f20 = −ABC1C2 − C2
1C

2
2 − C1C2D

2
1 − C1C2D

2
2 − C2

1D1D2 − C2
2D1D2 + 2C1C2D1D2 − 2D2

1D
2
2

−AC1D1D2R1

R2
+ AC2D1D2R1

R2
+ BC1D1D2R2

R1
− BC2D1D2R2

R1

+AC1D
2
2R1

R2
+ BC2D

2
1R2

R1
, (A.7)

f21 =AC1C2 + BC1C2 − AD1D2 − BD1D2 − C2
1C2R1

R2
− C1C

2
2R2

R1
+ C1D1D2R1

R2
+ C2D1D2R2

R1

−2C2D1D2R1

R2
− 2C1D

2
2R1

R2
− 2C2D

2
1R2

R1
− 2C1D1D2R2

R1
, (A.8)

f22 = −2C1C2 + 2D1D2, (A.9)

f4 = C2
1C

2
2 + C2

2D
2
1 + C2

1D
2
2 +D2

1D
2
2 = 1. (A.10)

Eq. (A.2) has been solved numerically to generate the stability curves displayed in the paper.
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